Category: Latest Issue

JACSON: Vol. 5 No. 1, 2018 (June 20, 2018)

Preparation of Nanopore Hydroxysodalite Zeolite Membranes by Dry Gel Method

Mansoor Kazemimoghadam

Department of Chemical Engineering, Malek-Ashtar University of Technology, Tehran, IRAN

The JACSOnline Group Publisher publishes the work under the licensing of a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Authors retain the copyright to their work. Users may read, copy and distribute the work in any medium  provided the authors and the journal are appropriately credited. The users may not use the material for commercial purposes.

pdf-vsmall PDF | Show Abstract

Hydroxysodalite (HS) Zeolite membrane was prepared onto seeded mullite supports using a new crystallization method called ‘Dry Gel Conversion Technique’. Molar composition of the starting gel of HS zeolite membrane was SiO2/Al2O3=1.0, Na2O/Al2O3=65, and H2O/Al2O3=1000. X-ray diffraction (XRD) patterns of the membranes exhibited peaks corresponding to the support and the zeolite. The crystal species were characterized by XRD and morphology of the supports subjected to crystallization was characterized by Scanning electron microscopy (SEM). Separation performance of HS zeolite membranes was studied for water-Ethanol mixtures using pervaporation (PV). The membranes showed good selectivity towards water in the water-Ethanol mixtures. Water permeates faster because of its preferential adsorption into the nano-pores of the hydrophilic zeolite membrane. In PV of water-Ethanol mixtures, the membrane exhibits a hydrophilic behavior, with a high selectivity towards water and a good flux. The best Flux and separation factor of the membranes were 2.05 kg/m2.h and 10000, respectively. In addition, these membranes used for hydrogen separation from CH4 and It shown high selectivity and permeability ratio to zeolite membrane preparated by conventional method.

Cited references

Aguado S, Gascón J, Jansen JC, Kapteijn F. Continuous synthesis of NaA zeolite membranes. M. 2009;120(1-2):170-176. doi:10.1016/j.micromeso.2008.08.062
Amnuaypanich S, Patthana J, Phinyocheep P. Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures. C. 2009;64(23):4908-4918. doi:10.1016/j.ces.2009.07.028
Cheng X, Wang J, Yu H, Guo J, He H, Long Y. Fine structure investigations on seeded dry gel and FER zeolite in a novel VPT process. M. 2009;118(1-3):152-162. doi:10.1016/j.micromeso.2008.08.033
Cho CH, Oh KY, Yeo JG, Kim SK, Lee YM. Synthesis, ethanol dehydration and thermal stability of NaA zeolite/alumina composite membranes with narrow non-zeolitic pores and thin intermediate layer. J. 2010;364(1-2):138-148. doi:10.1016/j.memsci.2010.08.014
Cho CH, Oh KY, Kim SK, Yeo JG, Lee YM. Improvement in thermal stability of NaA zeolite composite membrane by control of intermediate layer structure. J. 2011;366(1-2):229-236. doi:10.1016/j.memsci.2010.10.006
Coronas J. Present and future synthesis challenges for zeolites. C. 2010;156(2):236-242. doi:10.1016/j.cej.2009.11.006
Goergen S, Guillon E, Patarin J, Rouleau L. Shape controlled zeolite EU-1 (EUO) catalysts: Dry gel conversion type synthesis, characterization and formation mechanisms. M. 2009;126(3):283-290. doi:10.1016/j.micromeso.2009.06.019
Hari Prasad Rao PR, Ueyama K, Matsukata M. Crystallization of high silica BEA by dry gel conversion. A. 1998;166(1):97-103. doi:10.1016/s0926-860x(98)80005-7
HUANG Z, SHI Y, WEN R, GUO Y, SU J, MATSUURA T. Multilayer poly(vinyl alcohol)–zeolite 4A composite membranes for ethanol dehydration by means of pervaporation. S. 2006;51(2):126-136. doi:10.1016/j.seppur.2006.01.005
Hu D, Xia Q-H, Lu X-H, Luo X-B, Liu Z-M. Synthesis of ultrafine zeolites by dry-gel conversion without any organic additive. M. 2008;43(12):3553-3561. doi:10.1016/j.materresbull.2008.01.008
Kondo M, Kita H. Permeation mechanism through zeolite NaA and T-type membranes for practical dehydration of organic solvents. J. 2010;361(1-2):223-231. doi:10.1016/j.memsci.2010.05.048
Li Y, Chen H, Liu J, Li H, Yang W. Pervaporation and vapor permeation dehydration of Fischer–Tropsch mixed-alcohols by LTA zeolite membranes. S. 2007;57(1):140-146. doi:10.1016/j.seppur.2007.03.027
Morigami Y, Kondo M, Abe J, Kita H, Okamoto K. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. S. 2001;25(1-3):251-260. doi:10.1016/s1383-5866(01)00109-5
Pera-Titus M, Mallada R, Llorens J, Cunill F, Santamaría J. Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system. J. 2006;278(1-2):401-409. doi:10.1016/j.memsci.2005.11.026
Pera-Titus M, Llorens J, Cunill F, Mallada R, Santamaría J. Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique. C. 2005;104(2-4):281-287. doi:10.1016/j.cattod.2005.03.042
Sakthivel A, Iida A, Komura K, Sugi Y, Chary KVR. Nanosized β-zeolites with tunable particle sizes: Synthesis by the dry gel conversion (DGC) method in the presence of surfactants, characterization and catalytic properties. M. 2009;119(1-3):322-330. doi:10.1016/j.micromeso.2008.10.034
Sato K, Sugimoto K, Nakane T. Preparation of higher flux NaA zeolite membrane on asymmetric porous support and permeation behavior at higher temperatures up to 145°C in vapor permeation. J. 2008;307(2):181-195. doi:10.1016/j.memsci.2007.09.017
Sorenson SG, Payzant EA, Gibbons WT, et al. Influence of zeolite crystal expansion/contraction on NaA zeolite membrane separations. J. 2011;366(1-2):413-420. doi:10.1016/j.memsci.2010.10.043
Van Hoof V, Dotremont C, Buekenhoudt A. Performance of Mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial polymeric pervaporation membranes. S. 2006;48(3):304-309. doi:10.1016/j.seppur.2005.06.019