Synthesis, Evaluation, Modeling and Simulation of Nano-pore NaA Zeolite Membranes

Mansoor Kazemimoghadam1 and Zahra Amiri Rigi2

1Department of Chemical Engineering, Malek-Ashtar University of Technology, Tehran, IRAN, 2Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, IRAN

The JACSOnline Group Publisher publishes the work under the licensing of a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Authors retain the copyright to their work. Users may read, copy and distribute the work in any medium  provided the authors and the journal are appropriately credited. The users may not use the material for commercial purposes.

pdf-vsmall PDF | Show Abstract

Zeolite membranes have uniform and molecular-sized pores that separate molecules based on the differences in the molecules’ adsorption and diffusion properties. Strong electrostatic interaction between ionic sites and water molecules (due to its highly polar nature) makes the zeolite NaA membrane very hydrophilic. Zeolite NaA membranes are thus well suited for the separation of liquid-phase mixtures by pervaporation. In this study, experiments were conducted with various Ethanol–water mixtures (1–20 wt. %) at 25 °C. Total flux for Ethanol–water mixtures was found to vary from 0.331 to 0.229 kg/m2.h with increasing Ethanol concentration from 1 to 20 wt.%. Ionic sites of the NaA zeolite matrix play a very important role in water transport through the membrane. These sites act both as water sorption and transport sites. Surface diffusion of water occurs in an activated fashion through these sites. The precise Nano-porous structure of the zeolite cage helps in a partial molecular sieving of the large solvent molecules leading to high separation factors. A comparison between experimental flux and calculated flux using Stephan Maxwell (S.M.) correlation was made and a linear trend was found to exist for water flux through the membrane with Ethanol concentration. A comprehensive model also was proposed for the Ethanol/water pervaporation (PV) by Finite Element Method (FEM). The 2D model was masterfully capable of predicting water concentration distribution within both the membrane and the feed side of the pervaporation membrane module.

Cited references

Yu L, Zeng C, Wang C, Zhang L. In situ impregnation−gelation−hydrothermal crystallization synthesis of hollow fiber zeolite NaA membrane. M. 2017;244:278-283. doi:10.1016/j.micromeso.2016.10.047
Aguado S, Gascón J, Jansen JC, Kapteijn F. Continuous synthesis of NaA zeolite membranes. M. 2009;120(1-2):170-176. doi:10.1016/j.micromeso.2008.08.062
Amnuaypanich S, Patthana J, Phinyocheep P. Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures. C. 2009;64(23):4908-4918. doi:10.1016/j.ces.2009.07.028
Das P, Ray SK. Analysis of sorption and permeation of acetic acid–water mixtures through unfilled and filled blend membranes. S. 2013;116:433-447. doi:10.1016/j.seppur.2013.06.003
Das P, Ray SK. Pervaporative recovery of tetrahydrofuran from water with plasticized and filled polyvinylchloride membranes. J. 2016;34:321-336. doi:10.1016/j.jiec.2015.12.007
Díaz VHG, Tost GO. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation. B. 2016;218:174-182. doi:10.1016/j.biortech.2016.06.091
Hogendoorn JA, van der Veen AJ, van der Stegen JHG, Kuipers JAM, Versteeg GF. Application of the Maxwell–Stefan theory to the membrane electrolysis process. C. 2001;25(9-10):1251-1265. doi:10.1016/s0098-1354(01)00697-4
Jain M, Attarde D, Gupta SK. Removal of thiophenes from FCC gasoline by using a hollow fiber pervaporation module: Modeling, validation, and influence of module dimensions and flow directions. C. 2017;308:632-648. doi:10.1016/j.cej.2016.09.043
Jiang J, Wang L, Peng L, et al. Preparation and characterization of high performance CHA zeolite membranes from clear solution. J. 2017;527:51-59. doi:10.1016/j.memsci.2017.01.005
Kazemimoghadam M, Pak A, Mohammadi T. Dehydration of water/1-1-dimethylhydrazine mixtures by zeolite membranes. M. 2004;70(1-3):127-134. doi:10.1016/j.micromeso.2004.02.015
Krishna R. Verification of the Maxwell–Stefan theory for diffusion of three-component mixtures in zeolites. Chemical Engineering Journal. 2002;87(1):1-9. doi:10.1016/s1385-8947(01)00187-5
Klinov AV, Akberov RR, Fazlyev AR, Farakhov MI. Experimental investigation and modeling through using the solution-diffusion concept of pervaporation dehydration of ethanol and isopropanol by ceramic membranes HybSi. J. 2017;524:321-333. doi:10.1016/j.memsci.2016.11.057
Kondo M, Kita H. Permeation mechanism through zeolite NaA and T-type membranes for practical dehydration of organic solvents. J. 2010;361(1-2):223-231. doi:10.1016/j.memsci.2010.05.048
Lin L, Zhang Y, Kong Y. Pervaporation separation of n-heptane/thiophene mixtures by polyethylene glycol membranes: Modeling and experimental. J. 2009;339(1):152-159. doi:10.1016/j.jcis.2009.07.015
Liu D, Liu G, Meng L, Dong Z, Huang K, Jin W. Hollow fiber modules with ceramic-supported PDMS composite membranes for pervaporation recovery of bio-butanol. S. 2015;146:24-32. doi:10.1016/j.seppur.2015.03.029
Liu G, Jiang Z, Cao K, et al. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J. 2017;523:185-196. doi:10.1016/j.memsci.2016.09.064
Li Q, Cheng L, Shen J, et al. Improved ethanol recovery through mixed-matrix membrane with hydrophobic MAF-6 as filler. S. 2017;178:105-112. doi:10.1016/j.seppur.2017.01.024
Li Y, Chen H, Liu J, Li H, Yang W. Pervaporation and vapor permeation dehydration of Fischer–Tropsch mixed-alcohols by LTA zeolite membranes. S. 2007;57(1):140-146. doi:10.1016/j.seppur.2007.03.027
Malekpour A, Millani MR, Kheirkhah M. Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions. D. 2008;225(1-3):199-208. doi:10.1016/j.desal.2007.02.096
Moulik S, Kumar KP, Bohra S, Sridhar S. Pervaporation performance of PPO membranes in dehydration of highly hazardous mmh and udmh liquid propellants. J. 2015;288:69-79. doi:10.1016/j.jhazmat.2015.02.020
Moulik S, Nazia S, Vani B, Sridhar S. Pervaporation separation of acetic acid/water mixtures through sodium alginate/polyaniline polyion complex membrane. S. 2016;170:30-39. doi:10.1016/j.seppur.2016.06.027
Narkkun T, Jenwiriyakul W, Amnuaypanich S. Dehydration performance of double-network poly(vinyl alcohol) nanocomposite membranes (PVAs-DN). J. 2017;528:284-295. doi:10.1016/j.memsci.2016.12.069
Nour M, Kosaka H, Bady M, Sato S, Abdel-Rahman AK. Combustion and emission characteristics of DI diesel engine fuelled by ethanol injected into the exhaust manifold. F. 2017;164:33-50. doi:10.1016/j.fuproc.2017.04.018
Pera-Titus M, Llorens J, Tejero J, Cunill F. Description of the pervaporation dehydration performance of A-type zeolite membranes: A modeling approach based on the Maxwell–Stefan theory. C. 2006;118(1-2):73-84. doi:10.1016/j.cattod.2005.12.006
Qiao Z, Wu Y, Li X, Zhou J. Molecular simulation on the separation of water/ethanol azeotropic mixture by poly(vinyl alcohol) membrane. F. 2011;302(1-2):14-20. doi:10.1016/j.fluid.2010.09.045
Qu H, Kong Y, Lv H, Zhang Y, Yang J, Shi D. Effect of crosslinking on sorption, diffusion and pervaporation of gasoline components in hydroxyethyl cellulose membranes. C. 2010;157(1):60-66. doi:10.1016/j.cej.2009.09.044
Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A. CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. C. 2011;168(1):60-67. doi:10.1016/j.cej.2010.12.034
Rom A, Miltner A, Wukovits W, Friedl A. Energy saving potential of hybrid membrane and distillation process in butanol purification: Experiments, modelling and simulation. C. 2016;104:201-211. doi:10.1016/j.cep.2016.03.012
Samei M, Iravaninia M, Mohammadi T, Asadi AA. Solution diffusion modeling of a composite PVA/fumed silica ceramic supported membrane. C. 2016;109:11-19. doi:10.1016/j.cep.2016.06.002
Santoro S, Galiano F, Jansen JC, Figoli A. Strategy for scale-up of SBS pervaporation membranes for ethanol recovery from diluted aqueous solutions. S. 2017;176:252-261. doi:10.1016/j.seppur.2016.12.018
Sato K, Sugimoto K, Nakane T. Preparation of higher flux NaA zeolite membrane on asymmetric porous support and permeation behavior at higher temperatures up to 145°C in vapor permeation. J. 2008;307(2):181-195. doi:10.1016/j.memsci.2007.09.017
Sorenson SG, Payzant EA, Gibbons WT, et al. Influence of zeolite crystal expansion/contraction on NaA zeolite membrane separations. J. 2011;366(1-2):413-420. doi:10.1016/j.memsci.2010.10.043
Van Hoof V, Dotremont C, Buekenhoudt A. Performance of Mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial polymeric pervaporation membranes. S. 2006;48(3):304-309. doi:10.1016/j.seppur.2005.06.019
Xia LL, Li CL, Wang Y. In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations. J. 2016;498:263-275. doi:10.1016/j.memsci.2015.10.025
Yin H, Lau CY, Rozowski M, et al. Free-standing ZIF-71/PDMS nanocomposite membranes for the recovery of ethanol and 1-butanol from water through pervaporation. J. 2017;529:286-292. doi:10.1016/j.memsci.2017.02.006

The Author