Synthesis and Application of C-Phenylcalix[4]resorcinarene in Adsorption of Cr(III) and Pb(II)

Budiana I Gusti M. Ngurah*1, Jumina2, and Chairil Anwar2

1Department of Chemistry, Faculty of Education and Teacher Training, Nusa Cendana University,  Jl. Adisucipto Penfui, Kupang, 85001, INDONESIA, 2Department of Chemistry, Faculty of Mathematics and Sciences, Gadjah Mada University, Yogyakarta, INDONESIA

The JACSOnline Group Publisher publishes the work under the licensing of a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Authors retain the copyright to their work. Users may read, copy and distribute the work in any medium  provided the authors and the journal are appropriately credited. The users may not use the material for commercial purposes.

pdf-vsmall PDF | Show Abstract

Synthesis and application of C-phenylcalix[4]resorcinarene (CPCR) as the Cr(III) and Pb(II) adsorbent has been conducted. CPCR was produced by acid-catalyzed-condensation of resorcinol and benzaldehyde. The characterization of the target compound was performed by IR, 1H-NMR, and LC-MS. The adsorption process using batch system. Most parameters in batch system confirm that CPCR is a good adsorbent for Cr(III) and Pb(II). The Cr(III) uptake was bigger than that of Pb(II), and also Cr(III) adsorption rate was faster than Pb(II). The adsorption kinetic both of Cr(III) and Pb(II)  adsorptions in batch followed pseudo 2nd order kinetics model. The results of adsorption equilibrium study showed that in adsorption Cr(III) and Pb(II) onto CPCR, Langmuir isotherm model was more applicable than Freundlich model.

https://doi.org/10.22341/jacson.00301p289

Cited references
1–10

Save

1.
Barnes CL, Bosch E. Self-Assembly of C-Methyl Calix[4]resorcinarene with 5,5′-Bipyrimidine. J. 2007;37(11):783-786. doi:10.1007/s10870-007-9228-3
2.
Beyeh NK, Kogej M, Åhman A, Rissanen K, Schalley CA. Flying Capsules: Mass Spectrometric Detection of Pyrogallarene and Resorcinarene Hexamers. A. 2006;45(31):5214-5218. doi:10.1002/anie.200600687
3.
Botta B, Cassani M, D’Acquarica I, Subissati D, Zappia G, Monache G. Resorcarenes: Hollow Building Blocks for the Host-Guest Chemistry. C. 2005;9(12):1167-1202. doi:10.2174/1385272054553613
4.
JAIN VK, PILLAI SG, PANDYA RA, AGRAWAL YK, SHRIVASTAV PS. Selective Extraction, Preconcentration and Transport Studies of Thorium(IV) Using Octa-Functionalized Calix[4]resorcinarene-Hydroxamic Acid. A. 2005;21(2):129-135. doi:10.2116/analsci.21.129
5.
Kazakova EK, Ziganshina AU, Muslinkina LA, et al. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2002;43(1/2):65-69. doi:10.1023/a:1020404220640
6.
Nicod L, Chitry F, Gaubert E, Lemaire M, Barnier H. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 1999;34(2):143-154. doi:10.1023/a:1008081300255
7.
Ruderisch A, Iwanek W, Pfeiffer J, Fischer G, Albert K, Schurig V. Synthesis and characterization of a novel resorcinarene-based stationary phase bearing polar headgroups for use in reversed-phase high-performance liquid chromatography. J. 2005;1095(1-2):40-49. doi:10.1016/j.chroma.2005.07.109
8.
Sokoließ T, Schönherr J, Menyes U, Roth U, Jira T. Characterization of calixarene- and resorcinarene-bonded stationary phases. J. 2003;1021(1-2):71-82. doi:10.1016/j.chroma.2003.09.014
9.
Tunstad LM, Tucker JA, Dalcanale E, et al. Host-guest complexation. 48. Octol building blocks for cavitands and carcerands. J. 1989;54(6):1305-1312. doi:10.1021/jo00267a015
10.
Utzig E, Pietraszkiewicz O, Pietraszkiewicz M. Thermal analysis of calix[4]resorcinarene complexes with secondary and tertiary amines. J. 2004;78(3):973-980. doi:10.1007/s10973-005-0463-0

The Author

admin