Making and Comparing the Performance of Zeolite Membranes

Mansoor Kazemimoghadam

Malek Ashtar University of Technology,Tehran; IRAN

The JACSOnline Group Publisher publishes the work under the licensing of a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Authors retain the copyright to their work. Users may read, copy and distribute the work in any medium  provided the authors and the journal are appropriately credited. The users may not use the material for commercial purposes.

pdf-vsmall PDF | Show Abstract

Zeolite membranes NaA, ZSM-5, Mordenite, NaX and NaY grown onto seeded mullite supports. Separation performance of zeolite membranes were studied for water-dimethylhydrazine mixtures using pervaporation (PV). The best Flux and separation factor of the membranes were 0.62 kg/m2.h and 52000, respectively, for NaA zeolite membrane. Strong electrostatic interaction between ionic sites and water molecules (due to its polar nature) makes the zeolite NaA membrane very hydrophilic. Zeolite NaA membranes are thus well suited for separating liquid-phase mixtures by pervaporation. In this study, experiments were conducted with various dimethylhydrazine –water mixtures (1–20 wt. %) at 25. Total flux for UDMH–water mixtures was found to vary from 0.331 to 0.241 kg/m2.h with increasing UDMH concentration from 1 to 20 wt.%. Ionic sites of the NaA zeolite matrix play a very important role in water transport through the membrane. Surface diffusion of water occurs in an activated fashion through these sites. A comparison between experimental flux and calculated flux using Stephan Maxwell (S.M.) correlation was made and a linear trend was found to exist for water flux through the membrane with UDMH concentration.

Cited references

Krishna R. Verification of the Maxwell–Stefan theory for diffusion of three-component mixtures in zeolites. Chemical Engineering Journal. 2002;87(1):1-9. doi:10.1016/s1385-8947(01)00187-5
Sridhar S, Susheela G, Reddy GJ, Khan A. Crosslinked chitosan membranes: characterization and study of dimethylhydrazine dehydration by pervaporation. P. 2001;50(10):1156-1161. doi:10.1002/pi.761
Ravindra R, Krovvidi KR, Khan AA, Kameswara Rao A. D.s.c studies of states of water, hydrazine and hydrazine hydrate in ethylcellulose membrane1I.I.C.T. Communication No. 37521. P. 1999;40(5):1159-1165. doi:10.1016/s0032-3861(98)00274-2
Pera-Titus M, Llorens J, Tejero J, Cunill F. Description of the pervaporation dehydration performance of A-type zeolite membranes: A modeling approach based on the Maxwell–Stefan theory. C. 2006;118(1-2):73-84. doi:10.1016/j.cattod.2005.12.006
Malekpour A, Millani MR, Kheirkhah M. Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions. D. 2008;225(1-3):199-208. doi:10.1016/j.desal.2007.02.096
Baig MA, Patel F, Alhooshani K, Muraza O, Wang EN, Laoui T. In-situ aging microwave heating synthesis of LTA zeolite layer on mesoporous TiO2 coated porous alumina support. J. 2015;432:123-128. doi:10.1016/j.jcrysgro.2015.09.012
Pera-Titus M, Mallada R, Llorens J, Cunill F, Santamaría J. Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system. J. 2006;278(1-2):401-409. doi:10.1016/j.memsci.2005.11.026
Shao P, Kumar A. Separation of 1-butanol/2,3-butanediol using ZSM-5 zeolite-filled polydimethylsiloxane membranes. J. 2009;339(1-2):143-150. doi:10.1016/j.memsci.2009.04.042
Nai S, Liu X, Liu W, Zhang B. Ethanol recovery from its dilute aqueous solution using Fe-ZSM-5 membranes: Effect of defect size and surface hydrophobicity. M. 2015;215:46-50. doi:10.1016/j.micromeso.2015.05.009
Moulik S, Kumar KP, Bohra S, Sridhar S. Pervaporation performance of PPO membranes in dehydration of highly hazardous mmh and udmh liquid propellants. J. 2015;288:69-79. doi:10.1016/j.jhazmat.2015.02.020
Sorenson SG, Payzant EA, Gibbons WT, et al. Influence of zeolite crystal expansion/contraction on NaA zeolite membrane separations. J. 2011;366(1-2):413-420. doi:10.1016/j.memsci.2010.10.043
Sun W, Wang X, Yang J, et al. Pervaporation separation of acetic acid–water mixtures through Sn-substituted ZSM-5 zeolite membranes. J. 2009;335(1-2):83-88. doi:10.1016/j.memsci.2009.02.037
Aguado S, Gascón J, Jansen JC, Kapteijn F. Continuous synthesis of NaA zeolite membranes. M. 2009;120(1-2):170-176. doi:10.1016/j.micromeso.2008.08.062
Algieri C, Bernardo P, Barbieri G, Drioli E. A novel seeding procedure for preparing tubular NaY zeolite membranes. M. 2009;119(1-3):129-136. doi:10.1016/j.micromeso.2008.10.008
Amnuaypanich S, Patthana J, Phinyocheep P. Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures. C. 2009;64(23):4908-4918. doi:10.1016/j.ces.2009.07.028
Avila AM, Yu Z, Fazli S, Sawada JA, Kuznicki SM. Hydrogen-selective natural mordenite in a membrane reactor for ethane dehydrogenation. M. 2014;190:301-308. doi:10.1016/j.micromeso.2014.02.024
Caro J, Albrecht D, Noack M. Why is it so extremely difficult to prepare shape-selective Al-rich zeolite membranes like LTA and FAU for gas separation? S. 2009;66(1):143-147. doi:10.1016/j.seppur.2008.11.009
Cho CH, Oh KY, Yeo JG, Kim SK, Lee YM. Synthesis, ethanol dehydration and thermal stability of NaA zeolite/alumina composite membranes with narrow non-zeolitic pores and thin intermediate layer. J. 2010;364(1-2):138-148. doi:10.1016/j.memsci.2010.08.014
Hogendoorn JA, van der Veen AJ, van der Stegen JHG, Kuipers JAM, Versteeg GF. Application of the Maxwell–Stefan theory to the membrane electrolysis process. C. 2001;25(9-10):1251-1265. doi:10.1016/s0098-1354(01)00697-4
HUANG Z, SHI Y, WEN R, GUO Y, SU J, MATSUURA T. Multilayer poly(vinyl alcohol)–zeolite 4A composite membranes for ethanol dehydration by means of pervaporation. S. 2006;51(2):126-136. doi:10.1016/j.seppur.2006.01.005
Fedosov DA, Smirnov AV, Shkirskiy VV, Voskoboynikov T, Ivanova II. Methanol dehydration in NaA zeolite membrane reactor. J. 2015;486:189-194. doi:10.1016/j.memsci.2015.03.047
Richter H, Voß H, Voigt I, et al. High-flux ZSM-5 membranes with an additional non-zeolite pore system by alcohol addition to the synthesis batch and their evaluation in the 1-butene/i-butene separation. S. 2010;72(3):388-394. doi:10.1016/j.seppur.2010.03.011
Van Hoof V, Dotremont C, Buekenhoudt A. Performance of Mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial polymeric pervaporation membranes. S. 2006;48(3):304-309. doi:10.1016/j.seppur.2005.06.019

The Author